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ABSTRACT 

The major stresses to cause crack propagation in windshield 

glass panes are induced by bending moment which is resulted from 

the pressure diffierentials across the panes. Hence the stress 

intensity factors for finite plate with semi-elliptical surface 

flaw and edge crack under bending moments are examined. The 

results show that the crack growth will be upperbound if it is 

computed by using the stress intensity factor for finite plate 

with edge crack subjected to pure bending moments. Furthermore, 

if the ratio of crack depth to plate thickness, a/t, is within 

0.3, the stress intensity factor can be conservatively assumed to 

be constant of being the value at a/t equal to zero. A simplified 

equation to predict structural life of glass panes is derived 

based on constant stress intensity factor. The accuracy of 

structural life is mainly dependent on how close the empirical 

parameter, m, can be estimated. 
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- Int r oduc t i on  

Most structural materials contain certain surface flaw which 

is either inherent in the basic materials or is introduced during 

manufacturing, assemblying or transporting processes. The surface 

flaw in glass panes is one of the major factors that affect the 

glass strength[l]**. The flaw depth of the glass is controlled 

by the way how the surface is polished. Its depth is usually at 

least three times of the diameter of the grinding particles used 

in surfacing finishing operation[2]. 

can be improved to a degree so that no surface flaw exits, the 

strength of the glass can reach as high as 2,000,000 psi. Without 

If the grinding techniques 

any doubt, the structural life of glass pane can be prolonged 

by reducing the surface flaws. Nevertheless, today's most 

sophisticated grinding technology can not diminish the flaw depth 

beyond 0.001 inch. The inner glass panes of flight vehicles are 

constantly subjected to pressure differentials across the panes. 

Consequently, the incipient flaw existing in the glass panes will 

start to propagate because of the flexural stresses insi6e the 

glass induced by pressures. The elastic theory of fracture 

mechanics has been widely utilized to investigate the induced 

stress in the crack zone and the behaviour of crack propagation 

of the glasses. 

the vicinity of the crack are characterized by the stress- 

Since the states of elastic stress and strain in 

intensity factors, extensive research in this area has been 

conducted in the past two decades. Exact solutions as well as 

approximate solutions for various flaw shapes in infinite as 

well as finite bodies have been obtained[3,4]. 

:x's Numerals in the brackets refer to the list of references. 
.............................. 
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The objectives of this study are to investigate the stress- 

intensity factors for analyzing the crack propagation of glass 

panes and to seek the effecient way of predicting the structural 

life glass of panes under service loads. 

_ _ . ~  Stress-1ntensit.y _-___ __ Factors 

Fracture mechanics undoubtly has been accepted by most design 

engineer as a major tool to prevent the structural system from 

brittle failure. Since imperfection exists in most engineering 

materials, attention has been concentrated on analyzing the stress 

redistribution in the small region of flaw to ensure the material 

toughness in flaw region is strong enough to avoid failure. 

This toughness is characterized as fracture toughness K , which 

is a constant for given materials. The crack size correspondins 

to fracture toughness for the specified stress is termed as critical 

crack size. In case the crack size passes beyond the critical 

threshold, crack propagation becomes unstable and fracture occurs. 

The stress-intensity facor was introduced to describe the stress 

behaviour in the neighborhood of crack tip for the crack size 

smaller than critical size. Therefore the main subject of 

fracture mechanics is to obtain the solution of stress-intensity 

factors for different problems. 

IC 

In 1921, GriffithCS] uses the energy approach to establish the 

basic equation of stress-intensity factor for an infinite cracked 

flate sheet with a central crack subjected to a remote uniform 

tensile stress which is perpendicular to the crack. Griffith's 

formula only applies to infinite bodies. Errors may arise due 

to the finite size of crack solid as well as the plasticity 
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effect. Consequently, considerable efforts have been extended 

to investigate the stress-intensity factors for finite solids. 

Because of the complexities of the problems, the eaxct solutions 

of stress-intensity factors for various crack configurations In 

finite bodies are not available. Numerical techniques, such as 

finite element, boundary collocation, mapping, intergral transform, 

and asymptotic expansion, etc. have been extensively used by many 

reseachers to seek the approximate solutions for different cases. 

Shih[3] and rooke[4] sumarize the stress-intensity factors for 

various configurations in great details. 

Since the semi-elliptical surface flaw has been recognized 

as a closed approximation to natural flaw and since the major 

force to drive the crack propagation in glass panes is flexural 

stresses, it is of much interest to assess the effectiveness of 

the various stress-intensity factors of elliptical surface flaw 

in measureing crack growth in glasses. 

The stress-intensity factors for a shallow, semi-elliptical 

surface flaw in a plate with finite thickness under uniform 

tension was developed by Irwin[G] basing upon Green and Sueddon 

[7] solution. Method of superposition and iteration has been 

used to find the solution for semi-circular surface flaw in half 

space under tension, bending load or other loading combination[8,9]. 

Smith[lO] obtained an approximate solution for a semi-elliptical 

surface flaw in a plate with finite thickness due to tension and 

bending moment. Finite element method[11,12,13,14] and boundary- 

interal equation[l5] also have been applied to such complex 

problems of two or three dimensional solids. Since no exact 

solution exists, experimental studies were conducted to assess 
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the accuracy of the approximate solution derived from numerical 

techniques[l6,1?,18]. 

The solutions of stress-intensity factors of the edge crack 

in a plate with finite thickness were investigated by Gross 

et.a1.[19,20] using boundary collocation method. Their solutions 

agree well with the experimental data[21,22]. 

The solution of stress-intensity factor of semi-elliptical 

surface flaw in a plate with finite width can be expressed in 

the following general form; 

2 2 2  
{ COS g)+(a./c) sin 8 )  dC3 

and (0 = I" 
Jo K is the stress intensity factor; S is the maxmium flexural 

stress at the outer fiber; S is the yield strength and a and c 

are the minor and major axes of the ellipse, respectively. M is a 

I 

Y 

dimensionless magnification factor, dependent upon the crack 

geometry, crack depth, plate thickness and stress location. The 

second term in function Q is the correction factor for plasticity 

effect and will be neglected in this study since the glass is 

a brittle material. Q is equal to one for edge crack as a/c 

approches zero and becomes n/2 for semi-circular crack as a = c. 

In order to visualize the effect of parameters on the value of 

magnification factor M, Smith's[lO], Marrs'[l?] and Gross'[20,22] 

solutions at the point of maximum crack depth for surface flaw are 

plotted in Fig. 1 as function of a/c and a/t. When the ratio a/c 

approaches zero, Smith's solution closely agrees with Gross' 
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solution, which can be expressed in terms of power series as 

follows ; 
2 3 4 

(2a) M = 1.12 -1.39(a/t)+7.32(a/t) -13.1 (a/t) +14 (a/t) ---- 
The assumptions used to derive equation 2a are (1) finite 

thickness plate with central edge crack subjected to pure bending 

moments; (2) the direction of moment is perpendicular to crack 

plane: and (3) no surface traction exists on both front and back 

surfaces. Also Equation 2a is only valid for the ratio of crack 

depth to plate thickness not greater than 0.6. Within this limit, 

the error by using Equation 2a is less than 1%. In case shear 

force and bending moment exert simultaneously to the plate, the 

stress intensity factors are influenced by the ratio of plate span 

to plate thickness. The magnification factors calculated by 

Gross[22] for a simply supported plate with a span of L and edge 

crack in the central under central loads for L/t=8 and L/t=4 are 

shown in Equations 2b and 2c and plotted in Fig. 2. 
2 3 4 

M = 1.11 -1.55(a/t) +7.7l(a/t) -13.5(a/t) +14.2(a/t) ---(2b) 

for L/t = 8 
2 3 4 

M = 1.09 -1.73(a/t) +8.20(a/t) -14.2(a/t) +14.6(a/t) ---(2c) 

for L/t = 4 

A s  the span is lengthened, the effect of shear force becomes 

negligible. Hence the magnification factor for the three-point 

moment approaches to that of pure bending as it is illustrated in 

Fig. 2. Fig. 1 or 2 explains that the magnification factors 

decrease, at first, as a/t increases. Then they reach the minimum 

where a/t is approximately equal to 0.13 for pure bending and 

a/t=0.14 and 0.15 for L/t=8 and 4, respectively, for three point 

moment. Thereafter, both the magnification factors and a/t increase 

35-7 



simultaneously. Conclusion can be drawn from Figs. 1 and 2 that 

the stress-intensity factor of edge crack in a plate with finite 

thickness subjected to pure bending loads is more critical than 

that of semi-elliptical surface flaw under same conditions and is 

also more severe than that of edge crack under three-point moment. 

Therefore, to study the crack growth and to predict the structural 

life of glass panes, the stress-intensity factor of edge crack 0 

under pure bending moments should be considered to warrant the 

solutions In the safe domain. 

Cza-ck Growth 

According to the experimental study done by Wiederhorn et.al. 

[23 to 281  the crack velocity of flaw propagation in glass is a 

function of stress-intensity factor, K , and the environments. 

In this study, the effect of the enviornments on crack velocity will 
I 

be neglected. Consequently, the relationship between crack velocity 

and the stress-intensity factor can be expressed either in power 

V = V exp[B K ] ---___-_--_____________ (3b 
0 I 

where D, V ,  B and m are empirical constants. These constants 

can be determined from experimental data collected by conducting 

double-cantiliver-beam experiments. If the flaw depth at any 

time, T, is denoted by a, then the crack velocity is defined as 

35-8 



Substitute Equations 1 and 2a into Equations 4b, we obtain 

m T 
da = I (D S / - x  ) dT -------- (5a) 

0 
or it" 'I \if;~[. M S / ~ a ]  da = Jov0 dT --_-__------ (5b) 

Since the magnification factor is not a linear function of flaw 

depth, no explicit expression for crack growth can be obtained. 

However, Equations 5a or 5b can be solved by numerical method. 

In order to view the effect of parameter, a/t, on the crack 

propagation, a load spectrum shown in Figs. 4 is utilized to 

compute the crack growth from Equation 5b. The results show that 

the total crack growth mainly depends on stress intensity factor. 

A s  stress intensity factor decreases, the crack growth slows down. 

The growth rate approaches the minmum when stress intensity factor 

reaches the smallest value. Then the growth rate accelerates as 

stress intensity factor increases. 

To study the fracture behaviour of the windshield glass for 

shuttle orbiter, Hayashida et.al. [32] used M=1.12, which 

corresponding to M value by setting a/t = 0 in Equation 2a. 

According to the graphic indlcation from Fig. 5, t h e  calculated 

crack growth with M = 1.12 exceeds the actual crack growth by 

considering M as function of a/t as long as a/t is less than 

0.3. Accordingly, if M is considered to be 1.12 for a/t being 

less than 0.3, the crack growth will be the upper bound. If 

M is assumed to be constant, Equation 5a can be integrated. 

where S is the applied stress at time interval AT and a 
j j j 
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is the total crack depth at time T . In the case, the sustained 

stress is constant, i.e. S = S for all j, Equation 6 becomes 
j 

j 
m (1-m/2) 

(7) ------- ( 1-m/2) 
a = { a  +(1-m/2) D ( s  M / v--) T 1 
f 0 

a is the total crack depth and T is the time duration that the 

sustained stess is acting upon the object. 
f 

S_tr-uctural Life of Glass P-anes 

To study the structural life of glass panes, it is assumed that 

the magnification factor, M, be constant. It is justified since 

the variation of a/t during the crack propagation is very small. 

Wiederhorn et.a1.[24,25] have derived the expression for 

predictiing the structural life of glass for skylab windows 

by using Equations 3b and 4a. 

Since, in practice, a is usually much larger than the initial flaw 

depth, a , after discarding small terms, Equation 8 becomes 
C 

0 

BSM /? V 
0 

Equation 10 can be used to estimate the structural life of glass 

pane if the material constants of the particular glass are known. 

If Equation 10 is expressed in terms of stress-intensity factor 

and crack velocity, it becomes 
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V B K  
1 I1 

V is the initial crack velocity corresponding to K . 
1 I1 

This equation can be used to estimate the service life of glass 

panes if the information of the similar glass panes is given. 

This information can be obtained from experimental work. The 

service lives of the glass panes are related as follows: 

2 V K  1 
2 I2 

Wiederhorn [25] has shown that the results computed from 

Equation 9 agree with his experimental data. 

Since, as mentioned previously, the crack velocity can 

also be expressed in power formation, the time for flaw depth 

to reach the critical point is derived from Equations 3a and 4a. 

mitted, since a is usually much larger than a . 
C 0 

Equation 13 can be simplified as shown in the following: 

rely on m. The larger m is, the smaller the error will be. For 

example, if a /a is equal to 0.5, the percentages of 

error of T are about 0.8% and 0.006% with m being 16 and 30, 
o c  
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m 
respectively. After multiplying both sides of Equation 14 by S , 

take logarithm on both sides. 

If they are plotted in log-log scale as shown in Fig. 6, it is a 

straight line with a slope of -l/m for time,T, and stress, S .  

depth, the lines for various a 

From Figure 6, the approximate life of glass under any stress 

should parallel to one another. 
0 

level can easily be determined. The accuracy of the results will 

mainly be controlled by empirical constants, such as D and m. 

In order to predict the service life of glass by using 

Equation 16, it is necessary to measure the initial flaw depth, 

However, the relationship of the service lives of two identical 

glass panes in the same environment can be formulated from 

Equation 16. 

then Equation 17 becomes 

In supporting the validity of Equation 12, Wiederhorn[25] 
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obtained the following data from his experimental study. 

S = 8.4 MN/m , V = 1.4 x 10 m/s, T = 5 sec 
2 -4 

1 1 1 
3/2 

K = 0.7 MN/m 
I1 

2 -9 3/2 
S = 4.2 MN/m , v  = 2 x 1 0  m/s, K = 0.35 MN/m 
2 2 I2 

5 
By using Equation 12, T is equal to 7 x 10 sec, which 

confirms with his experimental data. Though m is not available 
2 

from his study, it can be estimated by substituting all VIS and 

K Is into Equation 3a. We obtain 

By substituting m into Equation 18, T is approximately equal to 

3.5 x 10 sec. It does not agree well with the experimental 
5 2 

results due to the lack of accurate information of constant m. 

From Wiederhorn's study[26] of crack velocity for various silica 

glasses, he shows that the constant m is in the range of the 30's. 

Since the service time calculated from Equation 18 is very 

sensitive to the constant m, extensive experimental study on 

m is a must. If accuracy of m is reachable, the service life 

of glass pane computed from Equation 14 will be very accurate 

for large cracks. Even for a small crack, Equation 18 is still 

a good estimator. 

The driving forces to initiate the propagation of surface 

flaw in the inner glass panes of flight vehicles are mainly due 

to flexural stresses induced by the pressure differentials 
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across the panes. Hence the stress intensity factors for various 

surface flaw shapes in a finite thickness plate subjected to 

bending loads are examined. The results show that the solutions 

obtained by using the stress intensity factor for plate with 

edge crack under pure bending moment to analyze the facture of 

glass panes are more conservative than that of semi-elliptical 

surface flaw under bending loads or edge crack under three 

point moment. If the ratio of the crack depth to plate thickness 

is within 0.3, the solution by using magnification factor equal 

to 1.12 will be the upper bound for crack growth and lower bound 

for structural life. The design based on this assumption of M 

being equal to 1.12 is conservative. 

A simple equation (Equation 18) is obtained to predict the 

structural life of one glass pane based on the information of the 

other. Since there is no experimental data available to measure 

the effectiveness of Equation 18 and the result obtained from 

this equation is very sensitive to the value of m, it is 

recommended that an extensive experiment should be conducted 

to study the variations of parameters as well as the verification 

of Equation 18. 
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